总的来讲,目前工业中获得应用的不锈钢的含碳量都是比较低的,大多数不锈钢的含碳量在0.1~0.4%之间,耐酸钢则以含碳0.1~0.2%的居多。含碳量大于0.4%的不锈钢仅占钢号总数的一小部分,这是因为在大多数使用条件下,不锈钢总是以耐腐蚀为主要目的。此外,较低的含碳量也是出于某些工艺上的要求,如易于焊接及冷变形等。
1-3. 镍在不锈钢中的作用是在与铬配合后才发挥出来的
镍是优良的耐腐蚀材料,也是合金钢的重要合金化元素。镍在钢中是形成奥氏体的元素,但低碳镍钢要获得纯奥氏体组织,含镍量要达到24%;而只有含镍27%时才使钢在某些介质中的耐腐蚀性能显著改变。所以镍不能单独构成不锈钢。但是镍与铬同时存在于不锈钢中时,含镍的不锈钢却具有许多可贵的性能。
基于上面的情况可知,镍作为合金元素在不锈钢中的作用,在于它使高铬钢的组织发生变化,从而使不锈钢的耐腐蚀性能及工艺性能获得某些改善。
1-4. 锰和氮可以代替铬镍不锈钢中镍
铬镍奥氏体钢的优点虽然很多,但近几十年来由于镍基耐热合金与含镍20%以下的热强钢的大量发展与应用,以及化学工业日益发展对不锈钢的需要量越来越大,而镍的矿藏量较少且又集中分布在少数地区,因此在世界范围内出现了镍在供和需方面的矛盾。所以在不锈钢与许多其他合金领域(如大型铸锻件用钢、工具钢、热强钢等)中,特别是镍的资源比较缺乏的国家,广泛地开展了节镍和以其他元素代镍的科学研究与生产实践,在这方面研究和应用比较多的是以锰和氮来代替不锈钢与耐热钢中的镍。
锰对于奥氏体的作用与镍相似。但说得确切一些,锰的作用不在于形成奥氏体,而是在于它降低钢的临界淬火速度,在冷却时增加奥氏体的稳定性,抑制奥氏体的分解,使高温下形成的奥氏体得以保持到常温。在提高钢的耐腐蚀性能方面,锰的作用不大,如钢中的含锰量从0到10.4%变化,也不使钢在空气与酸中的耐腐蚀性能发生明显的改变。这是因为锰对提高铁基固溶体的电极电位的作用不大,形成的氧化膜的防护作用也很低,所以工业上虽有以锰合金化的奥氏体钢(如40Mn18Cr4,50Mn18Cr4WN、ZGMn13钢等),但它们不能作为不锈钢使用。锰在钢中稳定奥氏体的作用约为镍的二分之一,即2%的氮在钢中的作用也是稳定奥氏体,并且作用的程度比镍还要大。例如,欲使含18%铬的钢在常温下获得奥氏体组织,以锰和氮代镍的低镍不锈钢与元镍的铬锰氮不诱钢,目前已在工业中获得应用,有的已成功地代替了经典的18-8铬镍不锈钢。
1-5.不锈钢中加钛或铌是为了防止晶间腐蚀。
1-6.钼和铜可以提高某些不锈钢的耐腐蚀性能。
1-7.其他元素对不锈钢的性能和组织的影响
以上主要的九种元素对不锈钢的性能和组织的影响,除这些元素对不锈钢性能与组织影响较大的元素以外,不锈钢中还含有一些其他的元素。有的是和一般钢一样为常存杂质元素,如硅、硫、磷等.也有的是为了某些特定的目的而加入的,如钴、硼、硒、稀土元素等。从不锈钢的耐腐蚀性能这一主要性质来说,这些元素相对于已讨论的九种元素,都是非主要方面的,虽然如此,但也不能完全忽略,因为它们对不锈钢的性能与组织同样也发生影响。
硅是形成铁素体的元素,在一般不锈钢中为常存杂质元素。
钴作为合金元素在钢中应用不多,这是因为钴的价格高及其在其它方面(如高速钢、硬质合金、钴基耐热合金、磁钢或硬磁合金等)有着更重要的用途。在一般不锈钢中加钴作合金元素的也不多,常用不锈钢如9Crl7MoVCo钢(含1.2-1.8%钴)加钴,目的并不在于提高耐腐蚀性能而在于提高硬度,因为这种不锈钢的主要用途是制造切片机械刃具、剪刀及手术刀片等。
硼:高铬铁素体不锈钢Crl7Mo2Ti钢中加0.005%硼,可使在沸腾的65%醋酸中的耐腐蚀性能提高。加微量的硼(0.0006~0.0007%)可使奥氏体不锈钢的热态塑性改善。少量的硼由于形成低熔点共晶体,使奥氏体钢焊接时产生热裂纹的倾向增大,但含有较多的硼(0.5~0.6%)时,反而可防止热裂纹的产生。因为当含有0.5~0.6%的硼时,形成奥氏体-硼化物两相组织,使焊缝的熔点降低。熔池的凝固温度低于半溶化区时,母材在冷却时产生的张应力,由处于液态.固态的焊缝金属承受,此时是不致引起裂缝的,即使在近缝区形成了裂纹,也可以为处于液态-固态的熔池金属所填充。含硼的铬镍奥氏体不锈钢在原子能工业中有着特殊的用途。
磷:在一般不锈钢中都是杂质元素,但其在奥氏体不锈钢中的危害性不像在一般钢中那样显著,故含量可允许高一些,如有的资料提出可达0.06%,以利于冶炼控制。个别的含锰的奥氏体钢的含磷量可达0.06%(如2Crl3NiMn9钢)以至0.08%(如Cr14Mnl4Ni钢)。利用磷对钢的强化作用,也有加磷作为时效硬化不锈钢的合金元素,PH17-10P钢(含0.25%磷)乃PH-HNM钢(含0.30磷)等。
硫和硒:在一般不锈钢中也是常有杂质元素。但向不锈钢中加0.2~0.4%的硫,可提高不锈钢的切削性能,硒也具有同样的作用。硫和硒提高不锈钢的切削性能,是因为它们降低不锈钢的韧性,例如一般18-8铬镍不锈钢的冲击值可达30公斤/厘米2。含0.31%硫的18-8钢(0.084%C、18.15%Cr、9.25%Ni)的冲击值为1.8公斤/平方厘米;含0。22%硒的18-8钢(0.094%C、18.4%Cr、9%Ni)的冲击值为3.24公斤/平方厘米。硫与硒均降低不锈钢的耐腐蚀性能,所以实际应用它们作为不锈钢的合金化元素的很少。
稀土元素:稀土元素应用于不锈钢,目前主要在于改善工艺性能方面。如向Crl7Ti钢和Cr17Mo2Ti钢中加少量的稀土元素,可以消除钢锭中因氢气引起的气泡和减少钢坯中的裂纹。奥氏体和奥氏体-铁素体不锈钢中加0.02~0.5%的稀土元素(铈镧合金),可显著改善锻造性能。曾有一种含19.5%铬、23%镍以及钼铜锰的奥氏体钢,由于热加工工艺性能在过去只能生产铸件,加稀土元素后则可轧制成各种型材。
2).按金相组织对不锈钢的分类及各类不锈钢的一般特点
按化学成分(主要是含铬量)及用途,不锈钢分为不锈与耐酸两大类。工业上还按自高温(900-1100度)加热空气冷却后钢的基体组织的类型对不锈钢进行分类,这是基于我们上面所讨论的碳及合金元素对不锈钢组织影响的特点决定的。
工业上应用的不锈钢按金相组织可分为三大类:铁素体不锈钢,马氏体不锈钢,奥氏体不锈钢。可以把这三类不锈钢的特点归纳(如下表),但需要说明的是马氏体不锈钢并不是都不可焊接,只是受某些条件的限制,如焊前应预热焊后应作高温回火等,而使焊接工艺比较复杂。实际生产中一些马氏体不锈钢如1Cr13,2Cr13以及2Cr13与45钢焊接还是比较多的。
不锈钢的分类、主要成分及性能比较
分类 大概成分 (%) 淬火性 耐蚀性 加工性 可焊接性 磁性
C Cr Ni
铁素体系 0.35以下 16-27 - 无 佳 尚佳 尚可 有
马氏体系 1.20以下 11-15 - 自硬性 可 可 不可 有
奥氏体系 0.25以下 16以上 7以上 无 优 优 优 无
以上分类仅是按钢的基体组织分的,由于钢中稳定奥氏体及形成铁素体的元素的作用不能互相平衡,以及由于大量的铬使平衡图S点左移,工业中应用的不锈钢的组织除了上面讲的三种基本类型以外,还有马氏体—铁素体,奥氏体-铁素体,奥氏体-马氏体等过渡型的复相不锈钢,以及具有马氏体-碳化物组织的不锈钢。
1-3. 镍在不锈钢中的作用是在与铬配合后才发挥出来的
镍是优良的耐腐蚀材料,也是合金钢的重要合金化元素。镍在钢中是形成奥氏体的元素,但低碳镍钢要获得纯奥氏体组织,含镍量要达到24%;而只有含镍27%时才使钢在某些介质中的耐腐蚀性能显著改变。所以镍不能单独构成不锈钢。但是镍与铬同时存在于不锈钢中时,含镍的不锈钢却具有许多可贵的性能。
基于上面的情况可知,镍作为合金元素在不锈钢中的作用,在于它使高铬钢的组织发生变化,从而使不锈钢的耐腐蚀性能及工艺性能获得某些改善。
1-4. 锰和氮可以代替铬镍不锈钢中镍
铬镍奥氏体钢的优点虽然很多,但近几十年来由于镍基耐热合金与含镍20%以下的热强钢的大量发展与应用,以及化学工业日益发展对不锈钢的需要量越来越大,而镍的矿藏量较少且又集中分布在少数地区,因此在世界范围内出现了镍在供和需方面的矛盾。所以在不锈钢与许多其他合金领域(如大型铸锻件用钢、工具钢、热强钢等)中,特别是镍的资源比较缺乏的国家,广泛地开展了节镍和以其他元素代镍的科学研究与生产实践,在这方面研究和应用比较多的是以锰和氮来代替不锈钢与耐热钢中的镍。
锰对于奥氏体的作用与镍相似。但说得确切一些,锰的作用不在于形成奥氏体,而是在于它降低钢的临界淬火速度,在冷却时增加奥氏体的稳定性,抑制奥氏体的分解,使高温下形成的奥氏体得以保持到常温。在提高钢的耐腐蚀性能方面,锰的作用不大,如钢中的含锰量从0到10.4%变化,也不使钢在空气与酸中的耐腐蚀性能发生明显的改变。这是因为锰对提高铁基固溶体的电极电位的作用不大,形成的氧化膜的防护作用也很低,所以工业上虽有以锰合金化的奥氏体钢(如40Mn18Cr4,50Mn18Cr4WN、ZGMn13钢等),但它们不能作为不锈钢使用。锰在钢中稳定奥氏体的作用约为镍的二分之一,即2%的氮在钢中的作用也是稳定奥氏体,并且作用的程度比镍还要大。例如,欲使含18%铬的钢在常温下获得奥氏体组织,以锰和氮代镍的低镍不锈钢与元镍的铬锰氮不诱钢,目前已在工业中获得应用,有的已成功地代替了经典的18-8铬镍不锈钢。
1-5.不锈钢中加钛或铌是为了防止晶间腐蚀。
1-6.钼和铜可以提高某些不锈钢的耐腐蚀性能。
1-7.其他元素对不锈钢的性能和组织的影响
以上主要的九种元素对不锈钢的性能和组织的影响,除这些元素对不锈钢性能与组织影响较大的元素以外,不锈钢中还含有一些其他的元素。有的是和一般钢一样为常存杂质元素,如硅、硫、磷等.也有的是为了某些特定的目的而加入的,如钴、硼、硒、稀土元素等。从不锈钢的耐腐蚀性能这一主要性质来说,这些元素相对于已讨论的九种元素,都是非主要方面的,虽然如此,但也不能完全忽略,因为它们对不锈钢的性能与组织同样也发生影响。
硅是形成铁素体的元素,在一般不锈钢中为常存杂质元素。
钴作为合金元素在钢中应用不多,这是因为钴的价格高及其在其它方面(如高速钢、硬质合金、钴基耐热合金、磁钢或硬磁合金等)有着更重要的用途。在一般不锈钢中加钴作合金元素的也不多,常用不锈钢如9Crl7MoVCo钢(含1.2-1.8%钴)加钴,目的并不在于提高耐腐蚀性能而在于提高硬度,因为这种不锈钢的主要用途是制造切片机械刃具、剪刀及手术刀片等。
硼:高铬铁素体不锈钢Crl7Mo2Ti钢中加0.005%硼,可使在沸腾的65%醋酸中的耐腐蚀性能提高。加微量的硼(0.0006~0.0007%)可使奥氏体不锈钢的热态塑性改善。少量的硼由于形成低熔点共晶体,使奥氏体钢焊接时产生热裂纹的倾向增大,但含有较多的硼(0.5~0.6%)时,反而可防止热裂纹的产生。因为当含有0.5~0.6%的硼时,形成奥氏体-硼化物两相组织,使焊缝的熔点降低。熔池的凝固温度低于半溶化区时,母材在冷却时产生的张应力,由处于液态.固态的焊缝金属承受,此时是不致引起裂缝的,即使在近缝区形成了裂纹,也可以为处于液态-固态的熔池金属所填充。含硼的铬镍奥氏体不锈钢在原子能工业中有着特殊的用途。
磷:在一般不锈钢中都是杂质元素,但其在奥氏体不锈钢中的危害性不像在一般钢中那样显著,故含量可允许高一些,如有的资料提出可达0.06%,以利于冶炼控制。个别的含锰的奥氏体钢的含磷量可达0.06%(如2Crl3NiMn9钢)以至0.08%(如Cr14Mnl4Ni钢)。利用磷对钢的强化作用,也有加磷作为时效硬化不锈钢的合金元素,PH17-10P钢(含0.25%磷)乃PH-HNM钢(含0.30磷)等。
硫和硒:在一般不锈钢中也是常有杂质元素。但向不锈钢中加0.2~0.4%的硫,可提高不锈钢的切削性能,硒也具有同样的作用。硫和硒提高不锈钢的切削性能,是因为它们降低不锈钢的韧性,例如一般18-8铬镍不锈钢的冲击值可达30公斤/厘米2。含0.31%硫的18-8钢(0.084%C、18.15%Cr、9.25%Ni)的冲击值为1.8公斤/平方厘米;含0。22%硒的18-8钢(0.094%C、18.4%Cr、9%Ni)的冲击值为3.24公斤/平方厘米。硫与硒均降低不锈钢的耐腐蚀性能,所以实际应用它们作为不锈钢的合金化元素的很少。
稀土元素:稀土元素应用于不锈钢,目前主要在于改善工艺性能方面。如向Crl7Ti钢和Cr17Mo2Ti钢中加少量的稀土元素,可以消除钢锭中因氢气引起的气泡和减少钢坯中的裂纹。奥氏体和奥氏体-铁素体不锈钢中加0.02~0.5%的稀土元素(铈镧合金),可显著改善锻造性能。曾有一种含19.5%铬、23%镍以及钼铜锰的奥氏体钢,由于热加工工艺性能在过去只能生产铸件,加稀土元素后则可轧制成各种型材。
2).按金相组织对不锈钢的分类及各类不锈钢的一般特点
按化学成分(主要是含铬量)及用途,不锈钢分为不锈与耐酸两大类。工业上还按自高温(900-1100度)加热空气冷却后钢的基体组织的类型对不锈钢进行分类,这是基于我们上面所讨论的碳及合金元素对不锈钢组织影响的特点决定的。
工业上应用的不锈钢按金相组织可分为三大类:铁素体不锈钢,马氏体不锈钢,奥氏体不锈钢。可以把这三类不锈钢的特点归纳(如下表),但需要说明的是马氏体不锈钢并不是都不可焊接,只是受某些条件的限制,如焊前应预热焊后应作高温回火等,而使焊接工艺比较复杂。实际生产中一些马氏体不锈钢如1Cr13,2Cr13以及2Cr13与45钢焊接还是比较多的。
不锈钢的分类、主要成分及性能比较
分类 大概成分 (%) 淬火性 耐蚀性 加工性 可焊接性 磁性
C Cr Ni
铁素体系 0.35以下 16-27 - 无 佳 尚佳 尚可 有
马氏体系 1.20以下 11-15 - 自硬性 可 可 不可 有
奥氏体系 0.25以下 16以上 7以上 无 优 优 优 无
以上分类仅是按钢的基体组织分的,由于钢中稳定奥氏体及形成铁素体的元素的作用不能互相平衡,以及由于大量的铬使平衡图S点左移,工业中应用的不锈钢的组织除了上面讲的三种基本类型以外,还有马氏体—铁素体,奥氏体-铁素体,奥氏体-马氏体等过渡型的复相不锈钢,以及具有马氏体-碳化物组织的不锈钢。